
CS144, Stanford University

CS144: An Introduction to Computer Networks

Packet Switching

CS144, Stanford University 2

Outline

1. End-to-end delay

2. Queueing delay

3. Simple deterministic queue model

4. Examples

CS144, Stanford University 3

Propagation Delay, tl: The time it takes a single bit to
travel over a link at propagation speed c.

l

tl =
l

c

Example: A bit takes 5ms to travel 1,000km in an optical fiber
with propagation speed 2 x 108 m/s.

Serialization Delay

CS144, Stanford University 5

Total time to send a packet across a link: The time from
when the first bit is transmitted until the last bit arrives.

p

Example: A 100bit packet takes 10 + 5 = 15ms to be sent at 10Mb/s over a 1km link.

r bits/s

𝑡 = 𝑡𝑝 + 𝑡𝑙 =
𝑝

𝑟
+
𝑙

𝑐

l

CS144, Stanford University

End-to-end delay

6

l1, r1 l2, r2

l3, r3 l4, r4

Example: How long will it take a packet of length p to travel from A
to B, from when the 1st bit is sent, until the last bit arrives? Assume
the switches store-and-forward packets along the path.

End-to-end delay, t =
p

ri
+
li

c

æ

è
ç

ö

ø
÷

i

å

A

B

CS144, Stanford University 7

l1, r1 l2, r2 l3, r3 l4, r4A B

S1 S2 S3

A

B

S1

S2

S3

p/r2

l2/c

p/r3

l3/c

p/r4

l4/c
time

l1/c

p/r1

End-to-end delay, t =
p

ri
+
li

c

æ

è
ç

ö

ø
÷

i

å

time

CS144, Stanford University

l1, r1 l2, r2 l3, r3 l4, r4

S1 S2 S3

8

A B

Other packets

Data H

Q2(t)

p/r1A

B

S1

S2

S3

p/r2

l1/c

l2/c

p/r3

p/r4

l3/c

l4/c

Q2(t)

time

End-to-end delay, t =
p

ri
+
li

c
+Qi t()

æ

è
ç

ö

ø
÷

i

å

CS144, Stanford University

Packet delay variation

9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700

Stanford-Princeton
4,000 km

Variation ~50ms

Stanford-Tsinghua
10,000 km

Variation ~200ms

CDF (%)

RTT (ms)

CS144, Stanford University

Simple model of a router queue

11

CS144, Stanford University 12

Simple model of a router queue

Properties:
1. 𝐴 𝑡 , 𝐷 𝑡 non-decreasing
2. 𝐴 𝑡 ≥ 𝐷(𝑡)

R
𝐴(𝑡), 𝜆 𝐷(𝑡)

Router queue

𝑄(𝑡)

𝐴(𝑡): cumulative arrivals up until time 𝑡
𝐷(𝑡): cumulative departures up until time 𝑡
𝑄(𝑡): number of packets in queue at time 𝑡

Arriving packets
from different inputs

CS144, Stanford University 13

Simple model of a queue

𝐴(𝑡)

𝐷(𝑡)

Cumulative number of bytes
departed up until time t.

Link
rate

Cumulative number of bytes
arrived up until time t.

𝑄(𝑡)

time

C
u

m
u

la
ti

ve
n

u
m

b
er

 o
f

b
yt

es

R

𝐴(𝑡)

𝐷(𝑡)

Properties:
1. 𝐴 𝑡 , 𝐷 𝑡 non-decreasing
2. 𝐴 𝑡 ≥ 𝐷(𝑡)

R

CS144, Stanford University 14

𝐷(𝑡)

𝐴(𝑡)

time

𝑄(𝑡)

𝑑(𝑡)

Queue occupancy: 𝑄(𝑡) = 𝐴(𝑡) − 𝐷(𝑡).

Queueing delay, 𝑑(𝑡), is the time spent in the queue by a
byte that arrived at time t, assuming the queue is served
first-come-first-served (FCFS).

Simple model of a queue

C
u

m
u

la
ti

ve
n

u
m

b
e

r
o

f
b

yt
es

CS144, Stanford University 15

Example (store & forward)
Every second, a 500 bit packet

arrives to a queue at rate
10,000b/s. The maximum

departure rate is 1,000b/s. What
is the average occupancy of the

queue?

Solution: During each repeating 1s cycle, the queue fills at rate
10,000b/s for 0.05s, then empties at rate 1,000b/s for 0.5s. Over
the first 0.55s, the average queue occupancy is therefore 250 bits.
The queue is empty for 0.45s every cycle, and so average queue
occupancy is (0.55 * 250) + (0.45 * 0) = 137.5 bits.

C
u

m
u

la
ti

ve
n

u
m

b
er

 o
f

b
it

s

𝐷(𝑡)

𝐴(𝑡)

time0.05s 0.55s 1.0s

500

1.05s

𝑄(𝑡)

CS144, Stanford University 16

Example (“cut through”)

Every second, a 500 bit packet arrives to
a queue at rate 10,000b/s. The

maximum departure rate is 1,000b/s.
What is the time average occupancy of

the queue?

C
u

m
u

la
ti

ve
n

u
m

b
er

 o
f

b
it

s

D(t)

A(t)

time0.05s 0.5s 1.0s

500

Solution: During each repeating 1s cycle, the queue fills at
rate 10,000b/s to 500-50=450 bits over the first 0.05s, then
drains at rate 1,000b/s for 0.45s. Over the first 0.5s, the
average queue occupancy is therefore 225 bits.
The queue is empty for 0.5s every cycle, and so average
queue occupancy: ത𝑄 𝑡 = 0.5 × 225 + 0.5 × 0 =
112.5

Q(t)

CS144, Stanford University

What if some packets are more
important than others?

CS144, Stanford University

By default, switches and routers use
FIFO (aka FCFS) queues

18

Buffer size, B

Departing
packets

Service Rate, RPackets arriving
to different

ingress ports

CS144, Stanford University

By default, switches and routers use
FIFO (aka FCFS) queues

19

Buffer size, B

Departing
packets

Service Rate, RPackets arriving
to different

ingress ports

CS144, Stanford University

Some packets are more important

For example:

1. The control traffic that keeps the network working (e.g. packets
carrying routing table updates)

2. Traffic from a particular user (e.g. a customer paying more)

3. Traffic belonging to a particular application (e.g. videoconference)

4. Traffic to/from particular IP addresses (e.g. emergency services)

5. Traffic that is time sensitive (e.g. clock updates)

20

CS144, Stanford University

Flows
When talking about priorities, it’s convenient to talk about a “flow” of
packets that all share a common set of attributes. For example:

1. The flow of packets all belonging to the same TCP connection
Identified by the tuple: TCP port numbers, IP addresses, TCP protocol

2. The flow of packets all destined to Stanford
Identified by a destination IP address belonging to prefix 171.64/16

3. The flow of packets all coming from Google
Identified by a source IP address belonging to the set of prefixes Google owns.

4. The flow of web packets using the http protocol
Identified by packets with TCP port number = 80

5. The flow of packets belonging to gold-service customers
Typically identified by marking the IP TOS (type of service) field

21

CS144, Stanford University

Outline

1. Strict Priorities

2. Weighted Priorities and Rate Guarantees

22

CS144, Stanford University 23

Strict Priorities
High priority flows

Low priority flows

CS144, Stanford University 24

Strict Priorities
High priority flows

Low priority flows

“Strict priorities” means a queue is only served
when all the higher priority queues are empty

CS144, Stanford University

Strict Priorities: Things to bear in mind
1. Strict priorities can be used with any number of queues.

2. Strict priorities means a queue is only served when all the higher
priority queues are empty.

3. Highest priority flows “see” a network with no lower priority
traffic.

4. Higher priority flows can permanently block lower priority flows.
Try to limit the amount of high priority traffic.

5. Not likely to work well if you can’t control the amount of high
priority traffic.

6. Or if you really want weighted (instead of strict) priority.

25

CS144, Stanford University

How do I give weighted
(instead of strict) priority?

26

CS144, Stanford University 27

CS144, Stanford University

Trying to treat flows equally

28

CS144, Stanford University

Trying to treat flows equally

29

While each flow gets to send at the same packet rate,
the data rate is far from equal.

CS144, Stanford University

Scheduling flows bit-by-bit

30

CS144, Stanford University

Scheduling flows bit-by-bit

31

Now each flow gets to send at the same data rate,
but we no longer have “packet switching”.

CS144, Stanford University

Can we combine the best of both?

i.e. packet switching, but with bit-by-bit accounting?

32

CS144, Stanford University

2 1

Fair Queueing

33

Packets are sent in the order they would complete in the bit-by-bit scheme.

23

23456

1

1

12345 12

342 1

Does this give fair (i.e. equal) share of the data rate?

5

CS144, Stanford University

Yes!

1. It can be proved that the departure time of a packet with Fair
Queueing is no more than Lmax/R seconds later than if it was
scheduled bit-by-bit. Where Lmax is the maximum length packet and
R is the data rate of the outgoing link.

2. In the limit, the two flows receive equal share of the data rate.

3. The result extends to any number of flows sharing a link.1

34
[1] “Analysis and Simulation of a Fair Queueing Algorithm” Demers, Keshav, Shenker. 1990.

CS144, Stanford University

What if we want to give a different
share of the link to each flow?

i.e., a weighted fair share.

35

CS144, Stanford University

Weighted Fair Queueing

36

1

As before, packets are sent in the order they would
complete in the bit-by-bit scheme.

23

23456

1

1 2 2 1

3/4

1/4

12 123

3

CS144, Stanford University

Weighted Fair Queueing (WFQ)

For any number of flows,
and any mix of packet sizes:

1. Determine the departure
time for each packet using
the weighted bit-by-bit
scheme.

2. Forward the packets in
order of increasing
departure time.

37

𝜙1

𝜙i

𝜙N

∑𝜙i = 1
i

R

Flow i is guaranteed to receive at least rate 𝜙iR

CS144, Stanford University

Weighted Fair Queueing (WFQ)

38

𝜙1

𝜙i

𝜙N

∑𝜙i = 1
i

R

Flow i is guaranteed to receive at least rate 𝜙iR

Classify packets
into flows

Packets arriving
at different

ingress ports

Packet
scheduler

CS144, Stanford University

Summary

1. FIFO queues are a free for all: No priorities, no guaranteed rates.

2. Strict priorities: High priority traffic “sees” a network with no
low priority traffic. Useful if we have limited amounts of high
priority traffic.

3. Weighted Fair Queueing (WFQ) lets us give each flow a
guaranteed service rate, by scheduling them in order of their bit-
by-bit finishing times.

39

CS144, Stanford University

Can we guarantee the delay
of a packet across a network

of packet switches?

CS144, Stanford University

Delay guarantees: Intuition

41

l1, r1 l2, r2 l3, r3 l4, r4A B

𝜏 =
𝑖

𝑝

𝑟𝑖
+
𝑙𝑖
𝑐
+ 𝑄𝑖(𝑡)End-to-end delay,

𝑄1 𝑡 𝑄2 𝑡 𝑄3 𝑡

The following values are fixed (or under our control): p, c, li and ri.
If we know the upper bound of 𝑄1 𝑡 , 𝑄2 𝑡 , and 𝑄3 𝑡 , then we

know the upper bound of the end-to-end delay.

CS144, Stanford University 42

r

Upper bound on Q 𝑡

b

𝑄 𝑡 ≤
𝑏

𝑟

Example: If a packet arrives to a FIFO queue of size 1 million bits, and the queue is served

at 1Gb/s, then the packet is guaranteed to depart within ൗ106

109 = 1ms.

CS144, Stanford University

Delay guarantees: Intuition

43

l1, r1 l2, r2 l3, r3 l4, r4A B

𝜏 =

𝑖=1

4
𝑝

𝑟𝑖
+
𝑙𝑖
𝑐

+

𝑖=1

3

𝑄𝑖 𝑡End-to-end delay for a single packet,

𝑄1 𝑡 𝑄2 𝑡 𝑄3 𝑡

𝑏1 𝑏2 𝑏3

≤

𝑖=1

4
𝑝

𝑟𝑖
+
𝑙𝑖
𝑐

+

𝑖=1

3
𝑏𝑖
𝑟𝑖

CS144, Stanford University

Why this is only an intuition…

1. Doesn’t tell us what happens when 𝑟2 < 𝑟1. Will packets be
dropped?

2. Treats all packets sharing a queue as one big flow; it doesn’t give a
different end-to-end delay to each flow.

Q: How can we give an upper bound on delay to each individual flow?

44

CS144, Stanford University

Weighted Fair Queueing (WFQ)

45

𝜙1

𝜙i

𝜙N

∑𝜙i = 1
i

R

Flow i is guaranteed to receive at least rate 𝜙iR

Classify packets
into flows

Packets arriving
to different

ingress ports

Packet
scheduler

CS144, Stanford University

Weighted Fair Queueing (WFQ)

46

𝜙1

𝜙i

𝜙N

∑𝜙i = 1
i

R

Flow i is guaranteed to receive at least rate 𝜙iR

Classify packets
into flows

Packets arriving
to different

ingress ports

Packet
scheduler

bi

≤
𝑏𝑖
𝜙𝑖𝑅

delay

CS144, Stanford University

Bounding end-to-end delay

47

CS144, Stanford University

Bounding end-to-end delay

48

𝜙R
b

𝜙R
b

𝜙R
b

1. Allocate a queue of size b for this flow
2. Assign a WFQ service rate of𝜙R

The end-to-end delay of a single packet of length p ≤ 4
𝑙

𝑐
+

𝑝

𝑅
+ 3

𝑏

𝜙R

l l

l l

CS144, Stanford University

What if two of the flow’s enter the
network back-to-back? (A “burst”)

1. If the packets are far apart, then the queues drain the first packet
before the second one arrives. All is good, and the delay equation
holds.

2. If the packets are close together in a “burst”, then they can arrive
faster than 𝜙R and the queue might overflow, dropping packets.

3. This might be OK in some cases. But if we want to bound the end-to-
end delay of all packets, then we need to deal with bursts. How?

49

CS144, Stanford University

The leaky bucket regulator
Limiting the “burstiness”

Token bucket

size, s

Packets In Packets Out

Send packet if and only if we
have tokens in the bucket

Tokens at

constant rate, r

CS144, Stanford University

The leaky bucket regulator
Limiting the “burstiness”

Tokens at

constant rate, r

Token bucket

size, s

Packets In Packets Out

Send packet if and only if we
have tokens in the bucket

CS144, Stanford University

The leaky bucket regulator
Limiting the “burstiness”

Tokens at

constant rate, r

Token bucket

size, s

Packets In Packets Out

Send packet if and only if we
have tokens in the bucket

CS144, Stanford University

The leaky bucket regulator

Number of bits that can be sent in any period
of length t is bounded by: 𝜎 + 𝜌𝑡

It is also called a “(𝜎, 𝜌) regulator”

𝐷(𝑡)
Output from regulator

r

s

time

Cumulative

bits

𝐴(𝑡)
Input to regulator

r

s

Packets In

𝐴(𝑡)
Packets Out

𝐷(𝑡)

CS144, Stanford University

The leaky bucket regulator
Limiting the “burstiness”

r

s

𝜙R
b

If 𝜙𝑅 > 𝜌 and 𝑏 > 𝜎 then delay through the first router for all packets in the flow ≤
𝑏

𝜙R

𝜙R
b

Cool theorem: If arrivals to the queue are 𝜎, 𝜌 -constrained,
and if the queue is served at rate 𝜙𝑅 > 𝜌 and 𝑏 > 𝜎,
then departures are also 𝜎, 𝜌 -constrained. Which means
arrivals to the next router are also 𝜎, 𝜌 -constrained.

CS144, Stanford University

Putting it all together

r

s

𝜙R
b

If 𝜙𝑅 > 𝜌 and 𝑏 > 𝜎 then the end-to-end delay of every packet of length p ≤ 4
𝑙

𝑐
+

𝑝

𝑅
+ 3

𝑏

𝜙R

l l

l

𝜙R
b

𝜙R
b

l

CS144, Stanford University

In other words

56

l1, r1 l2, r2 l3, r3 l4, r4A B

𝜏 =

𝑖=1

4
𝑝

𝑟𝑖
+
𝑙𝑖
𝑐

+

𝑖=1

3

𝑄𝑖 𝑡If we set 𝑏𝑖 > 𝜎, and 𝜙𝑖𝑅 > 𝜌 then

𝑄1 𝑡 𝑄2 𝑡 𝑄3 𝑡

≤

𝑖=1

4
𝑝

𝑟𝑖
+
𝑙𝑖
𝑐

+
3𝜎

𝜌

Leaky bucket
(𝜎, 𝜌) regulator

𝜙1R
b1 𝜙2R

b2 𝜙3R
b3

CS144, Stanford University

An Example
Q: In the network below, we want to give an application flow a rate of 10Mb/s and an end
to end delay of less than 4.7ms for 1,000 byte packets. What values of 𝜎 and 𝜌 should we
use for the leaky bucket regulator? And what service rate and buffer size do we need in
the routers? (Assume speed of propagation, 𝑐 = 2 × 108m/s).

A B10km, 1Gb/s 100km, 100Mb/s 10km, 1Gb/s

A: The fixed component of delay is Τ(120𝑘𝑚 𝑐) + 8,000𝑏𝑖𝑡𝑠(
1

109
+

1

100×106
+

1

109
) = 0.7ms, leaving

4ms delay for the queues in the routers. Let’s apportion 2ms delay to each router, which means the
queue in each router need be no larger than 2𝑚𝑠 × 10Mb/s = 20,000bits (or 2500bytes).
Therefore, the leaky bucket regulator in Host A should have 𝜌 = 10𝑀𝑏/𝑠 and 𝜎 ≤ 20,000𝑏𝑖𝑡𝑠.
WFQ should be set at each router so that 𝜙𝑖𝑅 ≥ 10𝑀𝑏/𝑠 and the flow’s queue should have a
capacity of at least 2500bytes.

Leaky bucket (𝜎, 𝜌) regulator

CS144, Stanford University

In practice

While almost all network equipment implements WFQ (even
your WiFi router at home might!), public networks don’t
provide a service to control end-to-end delay.

Why?

- It requires coordination of all the routers from end to end.

- In most networks, a combination of over-provisioning and priorities
work well enough.

58

CS144, Stanford University

Summary

1. If we know the size of a queue and the rate at which it is
served, then we can bound the delay through it.

2. WFQ allows us to pick the rate at which a queue is served.

3. With the two observations above, if no packets are dropped,
we can control end-to-end delay.

4. To prevent drops, we can use a leaky bucket regulator to
control the “burstiness” of flows entering the network.

59

