
The Bad-Attitude Guide to Computer Security

Keith Winstein

Stanford University
https://cs.stanford.edu/~keithw

Bad (-attitude?) advice

1.

2.

3.

4.

5.

6.

7.

8.

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2.

3.

4.

5.

6.

7.

8.

Mosh (mobile shell)

Mosh deployment

I Impetus: SSH for bad Wi-Fi
I + intermittent connectivity
I + roaming
I + local echo
I + security against forged RST

I First release: 2012

I Today: appx. 2–20 million users

Mosh protocol

I Every datagram wrapped with AES-OCB

I Every datagram represents idempotent operation

I No TLS, no DTLS, no public-key crypto

I No timestamps, no replay cache, no daemon

I No cipher negotiation, no file IO, no root

I Roaming: server replies to source address of
highest-numbered authentic incoming datagram

Hacker News

“One man band by the looks of

it. . . Implements its own private crypto

protocol (has it been vetted for replay

attacks? padding attacks? [insert 20

years of perplexing bugs confounding the

greatest minds in computer science]?)”

Slashdot

“Welcome to Yet Another Protocol

Devised By Academics Who Have Not

Been Near a Real Network in Twenty

Years, If Ever.”

Twitter

Dan Kaminsky: “Mosh being outside of SSH
Transport makes academic perf code
unauthenticated. . . Love MoSH, would love it
much more if it operated inside SSH’s channel”

Q: “any particular reason? Since quick
recovery from packetloss is one of its main
goals, UDP+OCB is needed.”

Kaminsky: “It’s *tricky* to build new secure
channels. Look at DTLS’s long and painful
dev cycle.”

Twitter (cont.)

Moxie Marlinspike: “I dunno, from a semantic
sec perspective, it’d be hard to do worse than
SSH. It’s in many ways worse than TLS.”

Kaminsky: “Do you suspect it has
BEAST-style bugs waiting to be found?”

Moxie: “Already found. The CBC ciphersuites
are totally off limits now because of chosen
ciphertext attacks. Much wrse. . . Just like
TLS. Bad protocol that keeps squeaking by in
some circumstances. Slowly painting itself into
a corner.”

Security holes in Mosh’s lifetime

TLS: I goto fail (Secure Transport)
I GnuTLS verify (GnuTLS)
I Heartbleed (OpenSSL)
I Lucky Thirteen
I BEAST
I CRIME
I POODLE
I FREAK
I Logjam
I 2013 RC4 attacks

SSH: I memory corruption attack
I X11 trust race condition
I weak tty permissions
I password limit circumvention
I root password auth bug
I unfinished roaming feature allows private key extraction
I command injection to xauth

Mosh: I (no security holes that we know about, so far)

The lesson

I Committees are the worst.

I Small projects have a huge advantage.

I Bugs are caused by features. Fewer features, fewer bugs.

I Feynman-ish dictum: You’re not as good as the best
contributor to a big project, but you’re probably better
than the average contributor.

I For security, the worst contributor may be what matters.

Advice that I really (mostly) believe

After 20 years of committee design,

SSL/TLS and its implementations are so

hairy and so buggy that for a particular

focused task, “doing your own” may

sometimes be the more reasonable path,

even if TLS would do the job.

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2.

3.

4.

5.

6.

7.

8.

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2.

3.

4.

5.

6.

7.

8.

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2. “Safe” languages aren’t that safe.

3.

4.

5.

6.

7.

8.

Hacker News

“Anyone doing security work in C in 2016 is in
my opinion committing malpractice and
putting user’s at risk because their ego’s can’t
take not fiddling bits by hand.”

Security holes prevented by memory safety

TLS: I goto fail (Secure Transport)

not prevented

I GnuTLS verify (GnuTLS)

not prevented

I Heartbleed (OpenSSL)

prevented

I Lucky Thirteen

not prevented

I BEAST

not prevented

I CRIME

not prevented

I POODLE

not prevented

I FREAK

not prevented

I Logjam

not prevented

I 2013 RC4 attacks

not prevented

SSH: I memory corruption attack

prevented

I X11 trust race condition

not prevented

I weak tty permissions

not prevented

I password limit circumvention

not prevented

I root password auth bug

not prevented

I roaming stub allows private key extraction

prevented

I command injection to xauth

not prevented

Security holes prevented by memory safety

TLS: I goto fail (Secure Transport) not prevented
I GnuTLS verify (GnuTLS) not prevented
I Heartbleed (OpenSSL) prevented
I Lucky Thirteen not prevented
I BEAST not prevented
I CRIME not prevented
I POODLE not prevented
I FREAK not prevented
I Logjam not prevented
I 2013 RC4 attacks not prevented

SSH: I memory corruption attack prevented
I X11 trust race condition not prevented
I weak tty permissions not prevented
I password limit circumvention not prevented
I root password auth bug not prevented
I roaming stub allows private key extraction prevented
I command injection to xauth not prevented

Popular memory-safe languages are way too powerful.

I What you say: “memory-safe”

I What you mean: “Haskell”

I What people hear: “JavaScript, Python, or Ruby on Rails”

I Any language with eval is apparently very tempted to use it.

I Java security track record is also not great.

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2. “Safe” languages aren’t that safe.

3.

4.

5.

6.

7.

8.

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2. “Safe” languages aren’t that safe.

3.

4.

5.

6.

7.

8.

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2. “Safe” languages aren’t that safe.

3. HTTPS is bad.

4.

5.

6.

7.

8.

HTTPS’s sacred promise

There exists a company from a list of 173
companies, and that company at one point
attested that the WHOIS contact email for the
domain name in my URL bar belonged to the
same person who now controls the server I’m
talking to (unless its cert has been stolen).

HTTPS’s sacred promise

There exists a company from a list of 173
companies, and that company at one point
attested that the WHOIS contact email for the
domain name in my URL bar belonged to the
same person who now controls the server I’m
talking to (unless its cert has been stolen).

HTTPS’s promise is pretty lame.

I Really should be verifying the file author, not just identity
of the server maintainer.

I After download, no way to authenticate a file, no record of
who attested to server’s identity, and no proof.

I Breaks even voluntary caching and virus-scanning.

I Guarantee provided by any of 173 semi-savory companies.

Pinning to the rescue

Browser Vendor: Use an HSTS header to pin a particular server
cert!

Site: That sounds like TOFU. What if a CA issues an evil cert
before the user first visits us?

Vendor: Ask Google, Apple, Microsoft, and Mozilla to hardcode
your server cert directly into the browser!

Pinning II

Site: We did it. Except, some of our users are behind a firewall
that seems to still be MITMing their sessions.

Vendor: The pin is only honored for “public” root CAs. If the user
installs a “private” root CA, that will override the pin, even if you
get your cert hardcoded into the browser.

Site: Why would the browser knowingly allow a man-in-the-middle
attack?

Vendor: Lots of companies use virus-scanning middleboxes, and the
only way to do that with HTTPS is to completely MITM the
sessions. Honoring the pin may be the right thing, but our browser
will be perceived as broken and we’d lose market share. We’d only
do this after our competitors had already done it.

Pinning III

Site: When disregarding the pin, at least display a broken padlock
and a warning:“Your session is being eavesdropped on by a private
authority. Click here to disable.”

Vendor: If we did that, we’d have to display the warning for all
eternity because those resources will land in the cache and
permanently corrupt it. So it wouldn’t be a very useful warning.

Site: If the cache is “permanently corrupted,” you should display a
warning for eternity!

Vendor: Then our browser would be perceived as broken and we’ll
lose market share. We’d only do this after the other vendors have.

Site: Can you at least make this an option for paranoid people?

Vendor: lol no

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2. “Safe” languages aren’t that safe.

3. HTTPS is bad.

4.

5.

6.

7.

8.

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2. “Safe” languages aren’t that safe.

3. HTTPS is bad.

4.

5.

6.

7.

8.

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2. “Safe” languages aren’t that safe.

3. HTTPS is bad.

4. Password hashing is bad.

5.

6.

7.

8.

Password hashing is bad.

I Password hashing is bad because it makes you think it’s okay
for users to send you their passwords.

I Users should not send you their passwords.

I Your site security should not depend on your enforcement of a
password complexity requirement.

I You do not want a server compromise to expose anything that
allows a bad guy to intercept or crack user passwords.

I Better: Delegate. Use public-key auth, or “Log in with
Google” / “Log in with Facebook” / OpenID Connect.

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2. “Safe” languages aren’t that safe.

3. HTTPS is bad.

4. Password hashing is bad.

5.

6.

7.

8.

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2. “Safe” languages aren’t that safe.

3. HTTPS is bad.

4. Password hashing is bad.

5.

6.

7.

8.

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2. “Safe” languages aren’t that safe.

3. HTTPS is bad.

4. Password hashing is bad.

5. Forward secrecy is usually secret, and that’s bad.

6.

7.

8.

Forward secrecy defined

Forward secrecy

In a communication between multiple parties, there exists a
“ratchet” at time t and a later “deletion event” at time u.

Forward secrecy: An exposure of secret material by a party
after time u will not aid an eavesdropper in decoding ciphertext
encoded before time t.

(Colloquially, t might be the end of a session, and u is when all
parties have erased the key or anything that can derive the key that
protected the session.)

The problem: no way to communicate when u occurs

I Websites are supposed to erase their key cache once a day.

I How can a client learn if this has happened? No way to ask.

I TLS 1.3 draft includes async key rotation, but no authenticated
way to acknowledge the message.

I My view: if you care about PFS, you should want
authenticated PFS. Any operation worth doing is worth
confirming, including key rotation.

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2. “Safe” languages aren’t that safe.

3. HTTPS is bad.

4. Password hashing is bad.

5. Forward secrecy is usually secret, and that’s bad.

6.

7.

8.

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2. “Safe” languages aren’t that safe.

3. HTTPS is bad.

4. Password hashing is bad.

5. Forward secrecy is usually secret, and that’s bad.

6.

7.

8.

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2. “Safe” languages aren’t that safe.

3. HTTPS is bad.

4. Password hashing is bad.

5. Forward secrecy is usually secret, and that’s bad.

6. End-to-end security is bad, and key escrow is good.

7.

8.

End-to-end security is bad.

I I used to believe in end-to-end security.

I But, I used to think of myself as the endpoint.

I Now I own endpoints that communicate securely
with their maker over Wi-Fi or their own LTE.

I I deserve the right to listen in on what my
own devices are saying about me.

End-to-end security is bad (cont.).

I Today, end-to-end security means the endpoint
is the only thing that can defend itself.

I Hard to provide defense-in-depth or even detect
attacks if you can only see ciphertext.

I Every cheap device is a single point of failure.

I Manufacturers will not keep up with security
patches for a $10 device.

Proposed research agenda

How can we build a firewall and auditor

for encrypted communications in order

to leave no single point of failure?

(Ex. approaches: Blindbox, delayed key release,
read-only keys)

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2. “Safe” languages aren’t that safe.

3. HTTPS is bad.

4. Password hashing is bad.

5. Forward secrecy is usually secret, and that’s bad.

6. End-to-end security is bad, and key escrow is good.

7.

8.

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2. “Safe” languages aren’t that safe.

3. HTTPS is bad.

4. Password hashing is bad.

5. Forward secrecy is usually secret, and that’s bad.

6. End-to-end security is bad, and key escrow is good.

7.

8.

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2. “Safe” languages aren’t that safe.

3. HTTPS is bad.

4. Password hashing is bad.

5. Forward secrecy is usually secret, and that’s bad.

6. End-to-end security is bad, and key escrow is good.

7. The Snowden docs shouldn’t have changed our behavior.

8.

GNU emacs, May 1987

;;; spook.el --- spook phrase utility for overloading the NSA line eater

;; Just before sending mail, do M-x spook.

;; A number of phrases will be inserted into your buffer, to help

;; give your message that extra bit of attractiveness for automated

;; keyword scanners. Help defeat the NSA trunk trawler!

European Union, July 2001

Bush admin. wins first-ever FISA appeal, 2002

New York Times, December 2005

AT&T whistleblower, April 2006

USA Today, May 2006

Wall Street Journal, June 2006

FISA Amendments Act, July 2008

Obama supported FAA, Hillary Clinton opposed

Snowden documents, October 2013

“Google has started to encrypt,” November 2013

Microsoft looking to encrypt, November 2013

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2. “Safe” languages aren’t that safe.

3. HTTPS is bad.

4. Password hashing is bad.

5. Forward secrecy is usually secret, and that’s bad.

6. End-to-end security is bad, and key escrow is good.

7. The Snowden docs shouldn’t have changed our behavior.

8.

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2. “Safe” languages aren’t that safe.

3. HTTPS is bad.

4. Password hashing is bad.

5. Forward secrecy is usually secret, and that’s bad.

6. End-to-end security is bad, and key escrow is good.

7. The Snowden docs shouldn’t have changed our behavior.

8.

Bad (-attitude?) advice

1. Do build your own cryptographic protocol.

2. “Safe” languages aren’t that safe.

3. HTTPS is bad.

4. Password hashing is bad.

5. Forward secrecy is usually secret, and that’s bad.

6. End-to-end security is bad, and key escrow is good.

7. The Snowden docs shouldn’t have changed our behavior.

8. Auto-updating without consent is bad, because we might
become bad.

nytimes.com, February 2016

This is not something to be congratulated for.

I Nobody congratulates the makers of SSH, GPG,
OpenSSL, Apache, or Mosh for making a system
“even they can’t hack.” And they shouldn’t.

I Good design = even the designer has no special
access.

I When you retain the ability to auto-update user
software without consent or public review, you
become part of the attack surface.

I Honor the user’s informed consent.

The Bad-Attitude Guide to Computer Security

1. Do build your own cryptographic protocol.

2. “Safe” languages aren’t that safe.

3. HTTPS is bad.

4. Password hashing is bad.

5. Forward secrecy is usually secret, and that’s bad.

6. End-to-end security is bad, and key escrow is good.

7. The Snowden docs shouldn’t have changed our behavior.

8. Auto-updating without consent is bad, because we might
become bad.

Keith Winstein
https://cs.stanford.edu/~keithw

https://cs.stanford.edu/~keithw

