
CS144: Introduction to Computer Networking Winter 2024

Lab Checkpoint 5: down the stack (the network interface)

Due: Thursday, Feb. 29, 11 p.m. (after lab session)

Collaboration Policy: Same as checkpoint 0. Please do not look at other students’ code or
solutions to past versions of these assignments. Please fully disclose any collaborators or any
gray areas in your writeup—disclosure is the best policy.

0 Overview

In this week’s checkpoint, you’ll go down the stack and implement a network interface: the
bridge between Internet datagrams that travel the world, and link-layer Ethernet frames that
travel one hop. This component can fit “underneath” your TCP/IP implementation from the
earlier labs, but it will also be used in a different setting: when you build a router in Lab 6,
it will route datagrams between network interfaces. Figure 1 shows how the network interface
fits into both settings.

In past labs, you wrote a TCP implementation that can exchange TCP segments with any
other computer that speaks TCP. How are these segments actually conveyed to the peer’s
TCP implementation? As we’ve discussed, there are a few options:

• TCP-in-UDP-in-IP. The TCP segments can be carried in the payload of a user
datagram. When working in a normal (user-space) setting, this is the easiest to
implement: Linux provides an interface (a “datagram socket”, UDPSocket) that lets
applications supply only the payload of a user datagram and the target address, and the
kernel takes care of constructing the UDP header, IP header, and Ethernet header, then
sending the packet to the appropriate next hop. The kernel makes sure that each socket
has an exclusive combination of local and remote addresses and port numbers, and
since the kernel is the one writing these into the UDP and IP headers, it can guarantee
isolation between different applications.

• TCP-in-IP. In common usage, TCP segments are almost always placed directly inside
an Internet datagram, without a UDP header between the IP and TCP headers. This
is what people mean by “TCP/IP.” This is a little more difficult to implement. Linux
provides an interface, called a TUN device, that lets application supply an entire
Internet datagram, and the kernel takes care of the rest (writing the Ethernet header,
and actually sending via the physical Ethernet card, etc.). But now the application has
to construct the full IP header itself, not just the payload.

• TCP-in-IP-in-Ethernet. In the above approach, we’re still relying on the Linux
kernel for part of the networking stack. Each time your code writes an IP datagram
to the TUN device, Linux has to construct an appropriate link-layer (Ethernet) frame
with the IP datagram as its payload. This means Linux has to figure out the next hop’s
Ethernet destination address, given the IP address of the next hop. If it doesn’t know



CS144: Introduction to Computer Networking Winter 2024

TCPConnection

TCPSender
TCPReceiver

StreamReassembler

ByteStreamByteStream

reliable byte streams

Application
(e.g. webget.cc)

TLS encryption fits here
(bytestream-to-bytestrea

TCP segments

Internet Protocol

Internet datagrams

Network Interface

Ethernet frames

Link-layer device
(NIC)

Lab 5
Check 4

Labs 1-4
Checks 1-3

Lab 0
Check 0

Routing logic
(longest-prefix match)

Lab 6
Check 5

Network Interface

Internet datagrams

Network
to London

Network Interface

Internet datagrams

Network Interface

Internet datagrams

Network
to São Paulo

Network
to Chicago

Figure 1: The network interface bridges the worlds of Internet datagrams and of link-layer
frames. This component is useful as part of a host’s TCP/IP stack (left side), and also as
part of an IP router (right side).



CS144: Introduction to Computer Networking Winter 2024

this mapping already, Linux broadcasts a query that asks, “Who claims the following
IP address? What’s your Ethernet address?” and waits for a response.

These functions are performed by the network interface: a component that translates
outbound IP datagrams into link-layer (e.g., Ethernet) frames and vice versa. (In a real
system, network interfaces typically have names like eth0, eth1, wlan0, etc.) In this
week’s lab, you’ll implement a network interface, and stick it at the very bottom of
your TCP/IP stack. Your code will produce raw Ethernet frames, which will be handed
over to Linux through an interface called a TAP device—similar to a TUN device, but
more low-level, in that it exchanges raw link-layer frames instead of IP datagrams.

Most of the work will be in looking up (and caching) the Ethernet address for each next-hop
IP address. The protocol for this is called the Address Resolution Protocol, or ARP.

We’ve given you unit tests that put your network interface through its paces. In Lab 6, you’ll
use the same network interface outside the context of TCP, as a part of an IP router.

1 Getting started

1. Make sure you have committed all your solutions to Checkpoint 1. Please don’t modify
any files outside the top level of the src directory, or webget.cc. You may have trouble
merging the Checkpoint 5 starter code otherwise.

2. While inside the repository for the lab assignments, run git fetch --all to retrieve
the most recent version of the lab assignment.

3. Download the starter code for Checkpoint 5 by running git merge origin/check5-startercode .

(If you have renamed the “origin” remote to be something else, you might need to use

a different name here, e.g. git merge upstream/check5-startercode .)

4. Make sure your build system is properly set up: cmake -S . -B build

5. Compile the source code: cmake --build build

6. Open and start editing the writeups/check5.md file. This is the template for your lab
writeup and will be included in your submission.

7. Reminder: please make frequent small commits in your local Git repository as you
work. If you need help to make sure you’re doing this right, please ask a classmate or
the teaching staff for help. You can use the git log command to see your Git history.

2 Checkpoint 5: The Address Resolution Protocol

Your main task in this lab will be to implement the three main methods of NetworkInterface
(in the network interface.cc file), maintaining a mapping from IP addresses to Ethernet
addresses. The mapping is a cache, or “soft state”: the NetworkInterface keeps it around



CS144: Introduction to Computer Networking Winter 2024

for efficiency’s sake, but if it has to restart from scratch, the mapping will naturally be
regenerated without causing a problem.

1. void NetworkInterface::send datagram(const InternetDatagram &dgram, const

Address &next hop);

This method is called when the caller (e.g., your TCPConnection or a router) wants to
send an outbound Internet (IP) datagram to the next hop.1 It’s your interface’s job to
translate this datagram into an Ethernet frame and (eventually) send it.

• If the destination Ethernet address is already known, send it right away. Create
an Ethernet frame (with type = EthernetHeader::TYPE IPv4), set the payload to
be the serialized datagram, and set the source and destination addresses.

• If the destination Ethernet address is unknown, broadcast an ARP request for the
next hop’s Ethernet address, and queue the IP datagram so it can be sent after
the ARP reply is received.

Except: You don’t want to flood the network with ARP requests. If the network
interface already sent an ARP request about the same IP address in the last
five seconds, don’t send a second request—just wait for a reply to the first one.
Again, queue the datagram until you learn the destination Ethernet address.

2. void NetworkInterface::recv frame(const EthernetFrame &frame);

This method is called when an Ethernet frame arrives from the network. The code
should ignore any frames not destined for the network interface (meaning, the Ethernet
destination is either the broadcast address or the interface’s own Ethernet address
stored in the ethernet address member variable).

• If the inbound frame is IPv4 , parse the payload as an InternetDatagram and, if
successful (meaning the parse() method returned ParseResult::NoError), push
the resulting datagram on to the datagrams received queue.

• If the inbound frame is ARP , parse the payload as an ARPMessage and, if successful,
remember the mapping between the sender’s IP address and Ethernet address for
30 seconds. (Learn mappings from both requests and replies.) In addition, if it’s
an ARP request asking for our IP address, send an appropriate ARP reply.

3. void NetworkInterface::tick(const size t ms since last tick);

This is called as time passes. Expire any IP-to-Ethernet mappings that have expired.

You can test your implementation by running cmake --build build --target check5

This test does not rely on your TCP implementation.

1Please don’t confuse the ultimate destination of the datagram, which is in the datagram’s own header as
the destination address, with the next hop. In this lab you’re only going to care about the next hop’s address.



CS144: Introduction to Computer Networking Winter 2024

3 Q & A

• How much code are you expecting?

Overall, we expect the implementation (in network interface.cc) will require about
100–150 lines of code in total.

• How do I ”send“ an Ethernet frame?

Call transmit() on it.

• What data structure should I use to record the mapping between next-hop IP address
and Ethernet addresses?

Up to you!

• How do I convert an IP address that comes in the form of an Address object, into a
raw 32-bit integer that I can write into the ARP message?

Use the Address::ipv4 numeric() method.

• What should I do if the NetworkInterface sends an ARP request but never gets a reply?
Should I resend it after some timeout? Signal an error to the original sender using
ICMP?

In real life, yes, both of those things, but don’t worry about that in this lab. (In real
life, an interface will eventually send an ICMP “host unreachable” back across the
Internet to the original sender if it can’t get a reply to its ARP requests.)

• What should I do if an InternetDatagram is queued waiting to learn the Ethernet address
of the next hop, and that information never comes? Should I drop the datagram after
some timeout?

Again, definitely a “yes” in real life, but don’t worry about that in this lab.

• Where can I read if there are more FAQs after this PDF comes out?

Please check the website (https://cs144.github.io/lab faq.html) and EdStem regularly.

4 Development and debugging advice

1. Implement the NetworkInterface’s public interface (and any private methods or
functions you’d like) in the file network interface.cc. You may add any private
members you like to the NetworkInterface class in network interface.hh.

2. You can test your code with cmake --build build --target check5 .

3. Please re-read the section on “using Git” in the Checkpoint 0 document, and remember
to keep the code in the Git repository it was distributed in on the main branch. Make
small commits, using good commit messages that identify what changed
and why.

https://cs144.github.io/lab_faq.html


CS144: Introduction to Computer Networking Winter 2024

4. Please work to make your code readable to the CA who will be grading it for style.
Use reasonable and clear naming conventions for variables. Use comments to explain
complex or subtle pieces of code. Use “defensive programming”—explicitly check
preconditions of functions or invariants, and throw an exception if anything is ever
wrong. Use modularity in your design—identify common abstractions and behaviors
and factor them out when possible. Blocks of repeated code and enormous functions
will make it hard to follow your code.

5 Submit

1. In your submission, please only make changes to the .hh and .cc files in the src

directory. Within these files, please feel free to add private members as necessary, but
please don’t change the public interface of any of the classes.

2. Before handing in any assignment, please run these in order:

(a) Make sure you have committed all of your changes to the Git repository. You
can run git status to make sure there are no outstanding changes. Remember:
make small commits as you code.

(b) cmake --build build --target format (to normalize the coding style)

(c) cmake --build build --target check5 (to make sure the automated tests

pass)

(d) Optional: cmake --build build --target tidy (suggests improvements to

follow good C++ programming practices)

3. Write a report in writeups/check5.md. This file should be a roughly 20-to-50-line
document with no more than 80 characters per line to make it easier to read. The
report should contain the following sections:

(a) Program Structure and Design. Describe the high-level structure and design
choices embodied in your code. You do not need to discuss in detail what you
inherited from the starter code. Use this as an opportunity to highlight important
design aspects and provide greater detail on those areas for your grading TA to
understand. You are strongly encouraged to make this writeup as readable as
possible by using subheadings and outlines. Please do not simply translate your
program into an paragraph of English.

(b) Implementation Challenges. Describe the parts of code that you found most
troublesome and explain why. Reflect on how you overcame those challenges and
what helped you finally understand the concept that was giving you trouble. How
did you attempt to ensure that your code maintained your assumptions, invariants,
and preconditions, and in what ways did you find this easy or difficult? How did
you debug and test your code?



CS144: Introduction to Computer Networking Winter 2024

(c) Remaining Bugs. Point out and explain as best you can any bugs (or unhandled
edge cases) that remain in the code.

4. Please also fill in the number of hours the assignment took you and any other comments.

5. Please let the course staff know ASAP of any problems at a lab session, or by posting a
question on Ed. Good luck!


	Overview
	Getting started
	Checkpoint 5: The Address Resolution Protocol
	Q & A
	Development and debugging advice
	Submit

