
CS144: Introduction to Computer Networking Winter 2024

Lab Checkpoint 0: networking warmup

Due: Tuesday, January 16, 3 p.m.

Welcome to CS144: Introduction to Computer Networking. In this warmup, you will set
up an installation of Linux on your computer, learn how to perform some tasks over the
Internet by hand, write a small program in C++ that fetches a Web page over the Internet,
and implement (in memory) one of the key abstractions of networking: a reliable stream of
bytes between a writer and a reader. We expect this warmup to take you between 2 and 6
hours to complete (future labs will take more of your time). Three quick points about the
lab assignment:

• It’s a good idea to read the whole document before diving in!

• Over the course of this 8-part lab assignment, you’ll be building up your own imple-
mentation of a significant portion of the Internet—a router, a network interface, and
the TCP protocol (which transforms unreliable datagrams into a reliable byte stream).
Most weeks will build on work you have done previously, i.e., you are building up your
own implementation gradually over the course of the quarter, and you’ll continue to
use your work in future weeks. This makes it hard to “skip” a checkpoint.

• The lab documents aren’t “specifications”—meaning they’re not intended to be con-
sumed in a one-way fashion. They’re written closer to the level of detail that a software
engineer will get from a boss or client. We expect that you’ll benefit from attending the
lab sessions and asking clarifying questions if you find something to be ambiguous and
you think the answer matters. We’ll update the “lab FAQ” document on the course
website in response to late questions that need clarification.

0 Collaboration Policy

The programming assignments must be your own work: You must write all the code
you hand in for the programming assignments, except for the code that we give you as part
of the assignment. Please do not copy-and-paste code from Stack Overflow, GitHub, or other
sources. If you base your own code on examples you find on the Web or elsewhere, cite the
URL in a comment in your submitted source code.

Working with others: You may not show your code to anyone else, look at anyone else’s
code, or look at solutions from previous years. You may discuss the assignments with other
students, but do not copy anybody’s code. If you discuss an assignment with another student,
please name them in a comment in your submitted source code. Please refer to the course
administrative handout for more details, and ask on EdStem if anything is unclear. Services
like GitHub Copilot or ChatGPT should be considered to be equivalent to “a student that
took CS144 in a prior year.”

EdStem: Please feel free to ask questions on EdStem, but please don’t post any source code.

https://cs144.stanford.edu
https://cs144.stanford.edu

CS144: Introduction to Computer Networking Winter 2024

1 Set up GNU/Linux on your computer

CS144’s assignments require the GNU/Linux operating system and a recent C++ compiler
that supports the C++ 2020 standard. Please choose one of these three options:

1. Recommended: Install the CS144 VirtualBox virtual-machine image (instructions at
https://stanford.edu/class/cs144/vm howto/vm-howto-image.html).

2. Use a Google Cloud virtual machine using our class’s coupon code (instructions at
https://stanford.edu/class/cs144/vm howto).

3. Run Ubuntu version 23.10, then install the required packages:

sudo apt update && sudo apt install git cmake gdb build-essential clang \

clang-tidy clang-format gcc-doc pkg-config glibc-doc tcpdump tshark

4. Use another GNU/Linux distribution, but be aware that you may hit roadblocks along
the way and will need to be comfortable debugging them. Your code will be tested
on Ubuntu 23.10 LTS with g++ 13.2 and must compile and run properly under those
conditions.

5. If you have a 2020–24 MacBook (with the ARM64 M1/M2/M3 chips), VirtualBox will
not successfully run. Instead, please install the UTM virtual machine software and our
ARM64 virtual machine image from https://stanford.edu/class/cs144/vm howto/.

2 Networking by hand

Let’s get started with using the network. You are going to do two tasks by hand: retrieving a
Web page (just like a Web browser) and sending an email message (like an email client). Both
of these tasks rely on a networking abstraction called a reliable bidirectional byte stream: you’ll
type a sequence of bytes into the terminal, and the same sequence of bytes will eventually
be delivered, in the same order, to a program running on another computer (a server). The
server responds with its own sequence of bytes, delivered back to your terminal.

2.1 Fetch a Web page

1. In a Web browser, visit http://cs144.keithw.org/hello and observe the result.

2. Now, you’ll do the same thing the browser does, by hand.

(a) On your VM, run telnet cs144.keithw.org http . This tells the telnet

program to open a reliable byte stream between your computer and another
computer (named cs144.keithw.org), and with a particular service running on

https://stanford.edu/class/cs144/vm_howto/vm-howto-image.html
https://stanford.edu/class/cs144/vm_howto
https://stanford.edu/class/cs144/vm_howto/
http://cs144.keithw.org/hello

CS144: Introduction to Computer Networking Winter 2024

that computer: the “http” service, for the Hyper-Text Transfer Protocol, used by
the World Wide Web.1

If your computer has been set up properly and is on the Internet, you will see:

user@computer:~$ telnet cs144.keithw.org http

Trying 104.196.238.229...

Connected to cs144.keithw.org.

Escape character is '^]'.

If you need to quit, hold down ctrl and press] , and then type close .

(b) Type GET /hello HTTP/1.1 . This tells the server the path part of the URL.

(The part starting with the third slash.)

(c) Type Host: cs144.keithw.org . This tells the server the host part of the

URL. (The part between http:// and the third slash.)

(d) Type Connection: close . This tells the server that you are finished

making requests, and it should close the connection as soon as it finishes replying.

(e) Hit the Enter key one more time: . This sends an empty line and tells the

server that you are done with your HTTP request.

(f) If all went well, you will see the same response that your browser saw, preceded
by HTTP headers that tell the browser how to interpret the response.

3. Assignment: Now that you know how to fetch a Web page by hand, show us you
can! Use the above technique to fetch the URL http://cs144.keithw.org/lab0/sunetid ,
replacing sunetid with your own primary SUNet ID. You will receive a secret code in
the X-Your-Code-Is: header. Save your SUNet ID and the code for inclusion in your
writeup.

2.2 Send yourself an email

Now that you know how to fetch a Web page, it’s time to send an email message, again using
a reliable byte stream to a service running on another computer.

1. SSH to sunetid@cardinal.stanford.edu (to make sure you are on Stanford’s network),
then run telnet 148.163.153.234 smtp .2 The “smtp” service refers to the Simple
Mail Transfer Protocol, used to send email messages. If all goes well, you will see:

user@computer:~$ telnet 148.163.153.234 smtp
1The computer’s name has a numerical equivalent (104.196.238.229, an Internet Protocol v4 address),

and so does the service’s name (80, a TCP port number). We’ll talk more about these later.
2These instructions might also work from outside Stanford’s network, but we can’t guarantee it.

CS144: Introduction to Computer Networking Winter 2024

Trying 148.163.153.234...

Connected to 148.163.153.234.

Escape character is '^]'.

220 mx0b-00000d03.pphosted.com ESMTP mfa-m0214089

2. First step: identify your computer to the email server. Type

HELO mycomputer.stanford.edu . Wait to see something like “250 ... Hello

cardinal3.stanford.edu [171.67.24.75], pleased to meet you”.

3. Next step: who is sending the email? Type MAIL FROM: sunetid @stanford.edu .

Replace sunetid with your SUNet ID.3 If all goes well, you will see “250 2.1.0 Sender

ok”.

4. Next: who is the recipient? For starters, try sending an email message to yourself. Type

RCPT TO: sunetid @stanford.edu . Replace sunetid with your own SUNet ID.

If all goes well, you will see “250 2.1.5 Recipient ok.”

5. It’s time to upload the email message itself. Type DATA to tell the server you’re

ready to start. If all goes well, you will see “354 End data with <CR><LF>.<CR><LF>”.

6. Now you are typing an email message to yourself. First, start by typing the headers
that you will see in your email client. Leave a blank line at the end of the headers.

354 End data with <CR><LF>.<CR><LF>

From: sunetid@stanford.edu
To: sunetid@stanford.edu
Subject: Hello from CS144 Lab 0!

7. Type the body of the email message—anything you like. When finished, end with a dot

on a line by itself: . . Expect to see something like: “250 2.0.0 33h24dpdsr-1

Message accepted for delivery”.

8. Type QUIT to end the conversation with the email server. Check your inbox and

spam folder to make sure you got the email.

9. Assignment: Now that you know how to send an email by hand to yourself, try
sending one to a friend or lab partner and make sure they get it. Finally, show us
you can send one to us. Use the above technique to send an email, from yourself, to
cs144grader@gmail.com.

3Yes, it’s possible to give a phony “from” address. Electronic mail is a bit like real mail from the postal
service, in that the accuracy of the return address is (mostly) on the honor system. You can write anything
you like as the return address on a postcard, and the same is largely true of email. Please do not abuse
this—seriously. With engineering knowledge comes responsibility! Sending email with a phony “from” address
is commonly done by spammers and criminals so they can pretend to be somebody else. It’s fun to play
around with this and pretend to be santaclaus@northpole.gov, but make sure you don’t deceive any
recipient. And: even if the recipient is in on the joke, do not send email pretending to be any Stanford
employee (otherwise you may set off the university’s IT security alerts).

CS144: Introduction to Computer Networking Winter 2024

2.3 Listening and connecting

You’ve seen what you can do with telnet: a client program that makes outgoing connections
to programs running on other computers. Now it’s time to experiment with being a simple
server: the kind of program that waits around for clients to connect to it.

1. In one terminal window, run netcat -v -l -p 9090 on your VM. You should see:

user@computer:~$ netcat -v -l -p 9090

Listening on [0.0.0.0] (family 0, port 9090)

2. Leave netcat running. In another terminal window, run telnet localhost 9090

(also on your VM).

3. If all goes well, the netcat will have printed something like “Connection from

localhost 53500 received!”.

4. Now try typing in either terminal window—the netcat (server) or the telnet (client).
Notice that anything you type in one window appears in the other, and vice versa.
You’ll have to hit for bytes to be transfered.

5. In the netcat window, quit the program by typing ctrl -C . Notice that the telnet

program immediately quits as well.

3 Writing a network program using an OS stream

socket

In the next part of this warmup lab, you will write a short program that fetches a Web page
over the Internet. You will make use of a feature provided by the Linux kernel, and by most
other operating systems: the ability to create a reliable bidirectional byte stream between two
programs, one running on your computer, and the other on a different computer across the
Internet (e.g., a Web server such as Apache or nginx, or the netcat program).

This feature is known as a stream socket. To your program and to the Web server, the socket
looks like an ordinary file descriptor (similar to a file on disk, or to the stdin or stdout
I/O streams). When two stream sockets are connected, any bytes written to one socket will
eventually come out in the same order from the other socket on the other computer.

In reality, however, the Internet doesn’t provide a service of reliable byte-streams. Instead,
the only thing the Internet really does is to give its “best effort” to deliver short pieces of
data, called Internet datagrams, to their destination. Each datagram contains some metadata
(headers) that specifies things like the source and destination addresses—what computer it
came from, and what computer it’s headed towards—as well as some payload data (up to
about 1,500 bytes) to be delivered to the destination computer.

CS144: Introduction to Computer Networking Winter 2024

Although the network tries to deliver every datagram, in practice datagrams can be (1) lost,
(2) delivered out of order, (3) delivered with the contents altered, or even (4) duplicated and
delivered more than once. It’s normally the job of the operating systems on either end of
the connection to turn “best-effort datagrams” (the abstraction the Internet provides) into
“reliable byte streams” (the abstraction that applications usually want).

The two computers have to cooperate to make sure that each byte in the stream eventually
gets delivered, in its proper place in line, to the stream socket on the other side. They also
have to tell each other how much data they are prepared to accept from the other computer,
and make sure not to send more than the other side is willing to accept. All this is done
using an agreed-upon scheme that was set down in 1981, called the Transmission Control
Protocol, or TCP.

In this lab, you will simply use the operating system’s pre-existing support for the Transmission
Control Protocol. You’ll write a program called “webget” that creates a TCP stream socket,
connects to a Web server, and fetches a page—much as you did earlier in this lab. In future
labs, you’ll implement the other side of this abstraction, by implementing the Transmission
Control Protocol yourself to create a reliable byte-stream out of not-so-reliable datagrams.

3.1 Let’s get started—fetching and building the starter code

1. The lab assignments will use a starter codebase called “Minnow.” On your VM, run
git clone https://github.com/cs144/minnow to fetch the source code for the lab.

2. Optional: Feel free to backup your repository to a private GitHub/GitLab/Bitbucket

repository (e.g., using the instructions at https://stackoverflow.com/questions/10065526/

github-how-to-make-a-fork-of-public-repository-private), but please make absolutely sure

that your work remains private.

3. Enter the Lab 0 directory: cd minnow

4. Create a directory to compile the lab software: cmake -S . -B build

5. Compile the source code: cmake --build build

6. Outside the build directory, open and start editing the writeups/check0.md file. This
is the template for your lab checkpoint writeup and will be included in your submission.

3.2 Modern C++: mostly safe but still fast and low-level

The lab assignments will be done in a contemporary C++ style that uses recent (2011)
features to program as safely as possible. This might be different from how you have been
asked to write C++ in the past. For references to this style, please see the C++ Core
Guidelines (http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines).

https://stackoverflow.com/questions/10065526/github-how-to-make-a-fork-of-public-repository-private
https://stackoverflow.com/questions/10065526/github-how-to-make-a-fork-of-public-repository-private
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

CS144: Introduction to Computer Networking Winter 2024

The basic idea is to make sure that every object is designed to have the smallest possible
public interface, has a lot of internal safety checks and is hard to use improperly, and knows
how to clean up after itself. We want to avoid “paired” operations (e.g. malloc/free, or
new/delete), where it might be possible for the second half of the pair not to happen (e.g., if a
function returns early or throws an exception). Instead, operations happen in the constructor
to an object, and the opposite operation happens in the destructor. This style is called
“Resource acquisition is initialization,” or RAII.

In particular, we would like you to:

• Use the language documentation at https://en.cppreference.com as a resource. (We’d
recommend you avoid cplusplus.com which is more likely to be out-of-date.)

• Never use malloc() or free().

• Never use new or delete.

• Essentially never use raw pointers (*), and use “smart” pointers (unique ptr or
shared ptr) only when necessary. (You will not need to use these in CS144.)

• Avoid templates, threads, locks, and virtual functions. (You will not need to use these
in CS144.)

• Avoid C-style strings (char *str) or string functions (strlen(), strcpy()). These
are pretty error-prone. Use a std::string instead.

• Never use C-style casts (e.g., (FILE *)x). Use a C++ static cast if you have to (you
generally will not need this in CS144).

• Prefer passing function arguments by const reference (e.g.: const Address & address).

• Make every variable const unless it needs to be mutated.

• Make every method const unless it needs to mutate the object.

• Avoid global variables, and give every variable the smallest scope possible.

• Before handing in an assignment, run cmake --build build --target tidy for
suggestions on how to improve the code related to C++ programming practices, and
cmake --build build --target format to format the code consistently.

On using Git: The labs are distributed as Git (version control) repositories—a way of
documenting changes, checkpointing versions to help with debugging, and tracking the
provenance of source code. Please make frequent small commits as you work, and
use commit messages that identify what changed and why. The Platonic ideal is
that each commit should compile and should move steadily towards more and more tests
passing. Making small “semantic” commits helps with debugging (it’s much easier to debug if
each commit compiles and the message describes one clear thing that the commit does) and
protects you against claims of cheating by documenting your steady progress over time—and
it’s a useful skill that will help in any career that includes software development. The graders
will be reading your commit messages to understand how you developed your solutions to the
labs. If you haven’t learned how to use Git, please do ask for help at the CS144 office hours

https://en.cppreference.com

CS144: Introduction to Computer Networking Winter 2024

or consult a tutorial (e.g., https://guides.github.com/introduction/git-handbook). Finally,
you are welcome to store your code in a private repository on GitHub, GitLab, Bitbucket,
etc., but please make sure your code is not publicly accessible.

3.3 Reading the Minnow support code

To support this style of programming, Minnow’s classes wrap operating-system functions
(which can be called from C) in “modern” C++. We have provided you with C++ wrappers
for concepts we hope you’re familiar with from CS 110/111, especially sockets and file
descriptors.

Please read over the public interfaces (the part that comes after “public:” in the files
util/socket.hh and util/file descriptor.hh. (Please note that a Socket is a type of
FileDescriptor, and a TCPSocket is a type of Socket.)

3.4 Writing webget

It’s time to implement webget, a program to fetch Web pages over the Internet using the
operating system’s TCP support and stream-socket abstraction—just like you did by hand
earlier in this lab.

1. From the build directory, open the file ../apps/webget.cc in a text editor or IDE.

2. In the get URL function, implement the simple Web client as described in this file,
using the format of an HTTP (Web) request that you used earlier. Use the TCPSocket
and Address classes.

3. Hints:

• Please note that in HTTP, each line must be ended with “\r\n” (it’s not sufficient
to use just “\n” or endl).

• Don’t forget to include the “Connection: close” line in your client’s request. This
tells the server that it shouldn’t wait around for your client to send any more
requests after this one. Instead, the server will send one reply and then will
immediately end its outgoing bytestream (the one from the server’s socket to your
socket). You’ll discover that your incoming byte stream has ended because your
socket will reach “EOF” (end of file) when you have read the entire byte stream
coming from the server. That’s how your client will know that the server has
finished its reply.

• Make sure to read and print all the output from the server until the socket reaches
“EOF” (end of file)—a single call to read is not enough.

• We expect you’ll need to write about ten lines of code.

https://guides.github.com/introduction/git-handbook

CS144: Introduction to Computer Networking Winter 2024

4. Compile your program by running make . If you see an error message, you will need to
fix it before continuing.

5. Test your program by running ./apps/webget cs144.keithw.org /hello . How

does this compare to what you see when visiting http://cs144.keithw.org/hello in a
Web browser? How does it compare to the results from Section 2.1? Feel free to
experiment—test it with any http URL you like!

6. When it seems to be working properly, run cmake --build build --target check webget

to run the automated test. Before implementing the get URL function, you should
expect to see the following:

$ cmake --build build --target check_webget

Test project /home/cs144/minnow/build

Start 1: compile with bug-checkers

1/2 Test #1: compile with bug-checkers Passed 1.02 sec

Start 2: t_webget

2/2 Test #2: t_webget***Failed 0.01 sec

Function called: get_URL(cs144.keithw.org, /nph-hasher/xyzzy)

Warning: get_URL() has not been implemented yet.

ERROR: webget returned output that did not match the test's expectations

After completing the assignment, you will see:

$ cmake --build build --target check_webget

Test project /home/cs144/minnow/build

Start 1: compile with bug-checkers

1/2 Test #1: compile with bug-checkers Passed 1.09 sec

Start 2: t_webget

2/2 Test #2: t_webget Passed 0.72 sec

100% tests passed, 0 tests failed out of 2

7. The graders will run your webget program with a different hostname and path than
make check webget runs—so make sure it doesn’t only work with the hostname and
path used by the unit tests.

4 An in-memory reliable byte stream

By now, you’ve seen how the abstraction of a reliable byte stream can be useful in com-
municating across the Internet, even though the Internet itself only provides the service of
“best-effort” (unreliable) datagrams.

To finish off this week’s lab, you will implement, in memory on a single computer, an object
that provides this abstraction. (You may have done something similar in CS 110/111.) Bytes

http://cs144.keithw.org/hello

CS144: Introduction to Computer Networking Winter 2024

are written on the “input” side and can be read, in the same sequence, from the “output”
side. The byte stream is finite: the writer can end the input, and then no more bytes can be
written. When the reader has read to the end of the stream, it will reach “EOF” (end of file)
and no more bytes can be read.

Your byte stream will also be flow-controlled to limit its memory consumption at any given
time. The object is initialized with a particular “capacity”: the maximum number of bytes
it’s willing to store in its own memory at any given point. The byte stream will limit the
writer in how much it can write at any given moment, to make sure that the stream doesn’t
exceed its storage capacity. As the reader reads bytes and drains them from the stream, the
writer is allowed to write more. Your byte stream is for use in a single thread—you don’t
have to worry about concurrent writers/readers, locking, or race conditions.

To be clear: the byte stream is finite, but it can be almost arbitrarily long4 before the writer
ends the input and finishes the stream. Your implementation must be able to handle streams
that are much longer than the capacity. The capacity limits the number of bytes that are
held in memory (written but not yet read) at a given point, but does not limit the length
of the stream. An object with a capacity of only one byte could still carry a stream that is
terabytes and terabytes long, as long as the writer keeps writing one byte at a time and the
reader reads each byte before the writer is allowed to write the next byte.

Here’s what the interface looks like for the writer:

void push(std::string data); // Push data to stream, but only as much as available capacity allows.

void close(); // Signal that the stream has reached its ending. Nothing more will be written.

bool is_closed() const; // Has the stream been closed?

uint64_t available_capacity() const; // How many bytes can be pushed to the stream right now?

uint64_t bytes_pushed() const; // Total number of bytes cumulatively pushed to the stream

And here is the interface for the reader:

std::string_view peek() const; // Peek at the next bytes in the buffer

void pop(uint64_t len); // Remove `len` bytes from the buffer

bool is_finished() const; // Is the stream finished (closed and fully popped)?

bool has_error() const; // Has the stream had an error?

uint64_t bytes_buffered() const; // Number of bytes currently buffered (pushed and not popped)

uint64_t bytes_popped() const; // Total number of bytes cumulatively popped from stream

Please open the src/byte stream.hh and src/byte stream.cc files, and implement an
object that provides this interface. As you develop your byte stream implementation, you
can run the automated tests with cmake --build build --target check0 .

If all tests pass, the check0 test will then run a speed benchmark of your implementation.
Anything faster than 0.1 Gbit/s (in other words, 100 million bits per second) is acceptable

4At least up to 264 bytes, which in this class we will regard as essentially arbitrarily long

CS144: Introduction to Computer Networking Winter 2024

for purposes of this class. (It is possible for an implementation to perform faster than 10
Gbit/s, but this depends on the speed of your computer and is not required.)

For any late-breaking questions, please check out the lab FAQ on the course website or ask
your classmates or the teaching staff in the lab session (or on EdStem).

What’s next? Over the next four weeks, you’ll implement a system to provide the same inter-
face, no longer in memory, but instead over an unreliable network. This is the Transmission
Control Protocol—and its implementations are arguably the most prevalent computer
program in the world.

5 Submit

1. In your submission, please only make changes to webget.cc and the source code in the
top level of src (byte stream.hh and byte stream.cc). Please don’t modify any of
the tests or the helpers in util.

2. Before handing in any assignment, please run these in order:

(a) Make sure you have committed all of your changes to the Git repository. You
can run git status to make sure there are no outstanding changes. Remember:
make small commits as you code.

(b) cmake --build build --target format (to normalize the coding style)

(c) cmake --build build --target check0 (to make sure the automated tests

pass)

(d) Optional: cmake --build build --target tidy (suggests improvements to

follow good C++ programming practices)

3. Finish editing writeups/check0.md, filling in the number of hours this assignment
took you and any other comments.

4. The mechanics of “how to turn it in” will be announced before the deadline.

5. Please let the course staff know ASAP of any problems at the lab session, or by posting
a question on EdStem. Good luck and welcome to CS144!

https://cs144.stanford.edu

	Collaboration Policy
	Set up GNU/Linux on your computer
	Networking by hand
	Fetch a Web page
	Send yourself an email
	Listening and connecting

	Writing a network program using an OS stream socket
	Let's get started—fetching and building the starter code
	Modern C++: mostly safe but still fast and low-level
	Reading the Minnow support code
	Writing webget

	An in-memory reliable byte stream
	Submit

